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Abstract— There is a subset of objects for which interaction
can provide numerous cues to those objects’ identity. Robots
are often in situations where they can take advantage being
able to observe humans interacting with the objects. In this
paper, we define this subset of ‘interactionable’ objects for
which we use our Multiple-Cue Object Recognition algorithm
(MCOR) to take advantage of using multiple cues. We present
two main contributions: 1) the introduction of cue-driven
equivalence class discrimination, and 2) the integration of this
technique, the general MCOR algorithm, and a hierarchical
activity recognition algorithm also presented in this paper,
demonstrated on data taken from a static Sony QRIO robot
observing a human interacting with objects. The hierarchical
activity recognition provides an important cue for the object
recognition.

I. INTRODUCTION

Because of the complexity of real world data, providing
robots with the ability to recognize objects has proven an
exceedingly difficult task. The great variation both in the
appearance of objects of the same class and in the appearance
of the same object under various conditions combine to
produce that difficulty.

In previous work, we have shown that visually similar
objects can be disambiguated through the integration of
information obtained from cues of various types producing
a Multiple-Cue Object Recognition (MCOR) algorithm[2].
In this work, we first define a subset of objects which
can be interacted with, which we term “interactionable”
objects, since this is the set of objects our multiple-cue
algorithm most benefits, and is a definition which many other
techniques (such as Functional Recognition) can utilize.

In light of this definition, this paper makes two main
contributions:

First, the introduction of cue-driven discrimination where
objects in the same equivalence classes given a cue, can
be distinguished. While in previous work we showed that
objects visually similar can be distinguished by another cue
such as activities and speech, we now present a method
that allows any set of objects similar to each other given
any cue to be incrementally divided through the addition of
various cue types, until each set contains only one object, and
thus can be recognized apart from the others. This reduces
the number of comparisons necessary when calculating the
evidence for different object labels and allows it to take
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advantage of the sequential nature of data received from a
robot.

Second, the integration of this technique, the general
MCOR algorithm, and an activity recognition algorithm out-
lined below to recognize objects in video data. When dealing
with robot data and many types of video data, it is important
to be able to obtain cue information in a speedy manner, we
provide a hierarchical activity recognition algorithm that can
provide fast and simple activity recognition for key activities.
We then provide results demonstrating these concepts on data
taken from a Sony QRIO robot.

Overall, this paper demonstrates the benefit of Multiple-
Cue Object Recognition and cue-equivalence classes in ob-
taining object recognition results for interactionable objects
from video in unrestricted real-world environments using
simple, fast-to-use cues, when typically more complicated
and extensively trained cues would be necessary.

II. RELATED WORK

A number of efforts address object recognition in a robot
[4], [8], [9], [6], [10], using techniques focused on very
specific visual cues or explicit gestures from the human [8].
Although effective for their specified tasks, none provide a
general framework for utilizing cues across various domains.

The weakness of depending on visual cues in terms of
lighting, pose, rotation, and other factors is a well-known
problem. Numerous techniques have sought to address this
problem [13], [3], [19], [16], [11], [5] through the use of
more descriptive and invariant features. Although fast and
accurate results have been demonstrated by these techniques,
the dependence of these approaches on visual cues alone
requires the use of large training sets to address the issue
of variablity within even a single object category, which can
not be avoided in real world data.

Other approaches have attempted to compensate for the
weaknesses of visual cues by including another type of
information such as context[15] and activity cues [14], [18].

Encouraged by the general success of these approaches in
integrating a non-visual cue for more robust object recogni-
tion, MCOR [2] provides a general framework for flexibly
including multiple cues of any number and any type, so
that all cues, whether activity, visual, context, or any other
possible cues available now or in the future can be used to
provide evidence for the presence of an object.

III. INTERACTIONABLE OBJECTS

There has been some inquiry as to when multiple-cue
object recognition can be best used, i.e., to what set of



objects can this recognition algorithm best be applied. Since
Multiple-Cue Object Recognition can utilize information
obtained through the observation of interactions with an
object by a human or any other agent, the set of objects
which can obtain the greatest benefit from this algorithm for
recognition are those which can be interacted with or can
interact. We will now call this set of objects, ‘interactionable’
objects for lack of an equivalent term currently existing.

For instance, the MCOR algorithm would not be best
used on a Mars Rover, where the video data often contains
objects (such as various rocks) which are not or cannot be
interacted with. Similarly, a video of a tree or a mountain
standing static would not be very useful to the MCOR
algorithm. In addition, the determination of whether an object
is interactionable or not is dataset-specific: Some objects may
be interactionable in one dataset and non-interactionable in
another depending on the set of interactions possible for each
dataset. Interaction in this definition means speaking about
objects, having sounds coming from the objects, being acted
upon, acting as well as another possible manipulation done
to or by the objects.

It should be noted however, that although our method has a
special advantage for these sets of interactionable objects, it
is possible to use it on the non-interactionable objects such as
the tree in the video above, if it is given visual data ahead of
time. It however, would not be best used in that case. MCOR
would only be as good as the visual cues it was given and
thus would be on par with other visual recognition system
using those same cues. MCOR gains its advantage when used
with the set of objects outlined above. The interactionable
term may also be useful for other methods that depend
on interaction to aid in recognition such as in Functional
Recognition [7], [17].

IV. CUE-BASED EQUIVALENCE CLASSES

In previous work, we presented a multiple-cue object
recognition algorithm (MCOR)[2]. In this section, we in-
troduce a new concept that can be applied to the algorithm
in order to reduce some of the work and produce results
more efficiently. Although there have been other decision-
tree methods for object recognition [21], [12], our method
deals with the handling of multiple cues and the introduction
of these different cues for more efficient reduction of the set
of possible object classes for a particular region.

A. Equivalence

An equivalence class is defined as the set of all objects
that contain the same property given a specific cue. In typical
object recognition, the cues are usually based on visual cues,
such as color or texture. These, however, often produce
classes that will encompass more than one type of object,
and thus errors in recognition will occur. The goal then is to
continually separate the objects into classes of smaller and
smaller size until the remaining set has cardinality of one.

In terms of the algorithm, we define an equivalence class,
eqk, as the set of object labels that are applicable to the kth

region we would like to recognize.

An object label is determined to be applicable, if it satisfies
the condition that the evidence provided by an extracted
cue from the data is very close to the evidence given by
the object label with the greatest amount of evidence, i.e.,
only object labels close to the highest evidence value will be
placed in that equivalence class. This is where “equivalence”
is determined, as given by the equation:

eqk←
{

x|ek,x−max
i

ek,i < ε

}
An equivalence class for the kth region, eqk is the set of

labels x whose evidence is “close”, i.e., a small given ε value
away from the largest evidence value, maxi ek,i.

The evidence is calculated by:

ek,i = wi,ls j,l

The evidence ek,i that region k is object i is given by
the product of wi,l , the weight between object i and cue l,
and s j,l , the similarity between the extracted cue j and the
corresponding cue l in the dictionary (A similarity function
is given as one of the properties of the cues [2]). Calculation
of the weight and similarity is outlined in [2], [1].

Thus, the equivalence class for a particular region, eqk,
will consist of all the object labels which are applicable to
that region given the cues seen thus far by the robot.

B. Incremental Discrimination

We now must determine how the classes can be divided.
In our algorithm, we introduce the idea of separation through
the addition of more cue types. In this process, the algorithm
begins with the equivalence classes outlined above where
every region initially starts with all possible object labels,
these labels are then divided with the introduction of a
cue type. Objects with the same property are then pooled
together, this process continues until each object is in its own
equivalence class or until all cues are utilized. See figure
3 for the pseudocode of the equivalence classes and this
incremental discrimination of the object labels, and figures
1 and 2 for examples.

C. MCOR and Equivalence Classes

The introduction of the concept of cue-based equivalence
classes cuts down on comparisons MCOR would have done,
and allows it to take advantage of the sequential introduction
of evidence characteristic of video data such as that taken
from a robot. In the following section, we give a brief review
of the MCOR algorithm.

1) MCOR Algorithm: The MCOR algorithm is based on
the concept of utilizing any potential evidence that can lead
to the identity of an object. Thus, it provides a flexible
framework allowing the use of any number of cues and of
any type [2].

The MCOR algorithm begins by extracting all possible cue
information, c j. It then segments the region, rk, associated
with that cue if it has not already been segmented. Such
regions become a possible object candidates.



Fig. 1. Model of an Equivalence class separation starting with the application of
the activity cue. In the first level, we have a circle containing the set of all objects in
that scenario. The dotted line represents the application of a cue to the set; in the first
case, the activity cue. The original set is then divided into three smaller sets containing
objects that are similar given that cue. For instance, pen and paper are grouped together
because they are both associated with the ”writing” activity. The application of another
cue, shape, represented by the second dotted line, further divides the sets based on
those with similar shapes. Since this separates all the objects into their own individual
sets allowing them to be distinguished completely from one another for identification,
the algorithm stops.

Fig. 2. Model of an Equivalence class separation starting with the application of
the shape cue, contrasting with figure 1

An object dictionary, containing all the cues l associated
with each particular object and their weights, wi,l , (i.e.
the strength of the association, and is learned using a
Probabilistic Relational Model [1]) is given. The evidence,
ek,i, that the region, rk, belongs to a particular object class,
i is then calculated as:

ek,i = ∑
l∈Ci

∑
j∈Ck

wi,ls j,l

It is at this point where the equivalence classes will cause
some change. The next section describes this in more detail.
The objects are then recognized as the object class with the
greatest evidence, if it is above a threshold, θ , i.e.,

labelk← argmaxi ek,i, if maxek,i > θ

Once an object is recognized, all the cues not previously
associated with that object class in the object dictionary get
added to its definition. In this way, new cues can be added to
an object’s definition in the dictionary. See figure 3 for the
pseudocode of the implementation of equivalence classes in
MCOR.

2) Inclusion of Equivalence Classes: With the utilization
of the equivalence classes, we can reduce the number of
comparisons made when determining the probability that a
particular object belongs to a particular class. This reduction
occurs in two primary ways:

1: Taking advantage of the temporal aspect of real robot
data, we no longer need to calculate the evidence from
scratch at each frame. Instead, the set of object labels
applicable to each region is adjusted incrementally at each
time step, based on the cue evidence given at that time.

2: Instead of comparing every object with every cue in the
object definition, it is only necessary to look at cues with the
equivalence classes, until there is only one object label that
fits that region, once that point is reached it is unnecessary
to look at any more cues.

For each region k, there is a set eqk for all object labels
applicable to that region, i.e. its equivalence class

• ∀eqk where |eqk |> 1 :
– Get next cue l in video from robot
– for each object label, i in eqk :
∗ ek,i = wi,l s j,l .
∗ the evidence that region k is object i, where wi,l is the weight between

object i and cue l, and s j,l is the similarity between the extracted cue
j and the cue l in the dictionary
· eqk ←{x|ek,x−maxi ek,i < ε}

Fig. 3. Pseudocode for incremental discrimination of the objects in
the equivalence classes

V. ACTIVITY RECOGNITION

In order to get the MCOR algorithm to work, it is neces-
sary to have cues that can provide useful information. One of
the most important cues is activity recognition information.
In order to make the algorithm practical for our real-time
video data, we created an efficient activity recognizer.

The standard approach to activity recognition is an HMM
based on observations such as the change in the x and y
position of a particular tracking point. There are several
advanced activity recognition systems, but since our focus
is primarily on the use of the cue, rather than developing
an intricate cue recognition system, we have developed an
activity recognition algorithm that can produce quick and
simple results for some key activities.

We based the algorithm on HMMs and Viterbi algorithm,
but doing so through a hierarchical structure. Below we first
describe this model, then show how it is used for recognition.

A. Hierarchical Model

Many of the activities we are interested in tend to be
higher-level activities, which we initially attempted to rec-
ognize using a single tier recognition system where large
activities movements were attempted to be recognized by
classifying the change in the x and y movement of the
centroid of the region being tracked. In our case, the region
is a bright pink wristband worn by the subject.

This however presented a problem, since for such activities
as eating, there would be a large distribution in the change
of activities. In order to solve this problem, we divided the



activities into smaller movements whose distributions are
more easily separable (see figure 4) and which will then be
used as observations for the larger activities.

1) Small Movements: The smaller movements consisted
of pickup, put down, move left, move right, and stay. These
movements distributions can be easily separated and thus
more easily recognized.

Fig. 4. Gaussian Models of the observations representing the small movements:
pick up, put down, move left, move right, and stay.

The HMM model for these states is shown in figure 5.
In order to do the recognition, we used the Baum-Welch
algorithm to learn the parameters of the HMM, and then
used the Viterbi algorithm (see figure 6) to recognize the
small movements.

Fig. 5. HMM representing the pick up, put down, move left, move right, and stay
states

In order to make the recognition online, we used a very
small window for the Viterbi algorithm. Figure 6 shows an
example of the recognition of a small movement. The Viterbi
algorithm generated results with a .96 accuracy.

2) Large Activities: The larger activities are then rec-
ognized using the smaller movements as observations. The
technique is the same for the smaller movements, i.e., the
Baum-Welch algorithm to calculate the parameters of the
HMM, then the Viterbi algorithm was used to recognize.

B. Algorithm for Recognition

The overall algorithm for the activity recognition then
proceeds as follows:

Fig. 6. An example of the activity recognition for a small movement on data from
the Sony QRIO observing a human.

Fig. 7. HMM representing the eating, writing, speaking, and other states (other
states is used to represent transition activities, usually consisting of one of the small
movements).

First, training data is produced where each image retrieved
from the video produced by the QRIO is given two labels:
a small movement and a larger activity for training of both
HMMs. The pink wristband is segmented in each image and
the centroid calculated.

The parameters for both HMMs are then calculated using
the Baum-Welch algorithm, where the small movements use
the change in location of the centroid as observations, while
the large activities use the small movements as observations.

Next, recognition is done online using an adjusted form
of Viterbi algorithm, where instead of calculating the path
between the states given by the HMMs, which would require
the entire video, we only run the algorithm on a small
window of data. In the case of the small movements, only
two observations were used, for the large activities, four
observations.

VI. INTEGRATION OF CONCEPTS

In this section, we describe the integration of the equiv-
alence classes, hierarchical activity recognition, and MCOR
algorithm for use on the data obtained from a Sony QRIO
robot. More specifically, we outline the exact cues used.

When running an algorithm on a robot, a key component
is speed, since it has to obtain results in real time. Because of



this, all the cues used in the algorithm were obtained through
fast and simple recognition systems described below:

ACTIVITY Activity information was obtained using the hier-
archical activity recognition.

COLOR Color information was taken through segmentation
using a color growing algorithm [20].

SHAPE Shape information was obtained by taking the shape
aspect ratio of a tight bounding box around the ob-
ject/segmented region, i.e.,

Aspect Ratio = Bounding Height/Bounding Length

SOUND Sound was used to determine whether a person was
speaking or not.

These cues were then used as data for the MCOR al-
gorithm. As mentioned earlier, the MCOR algorithm was
adjusted to include the concept of equivalence classes (see
figure 3). Thus, for each frame of the video retrieved
from the QRIO, the equivalence class algorithm was ap-
plied with the weights calculated according to the previous
MCOR algorithm [2], [1], using the cues outlined above
detected/recognized by the QRIO at each time frame. The
addition of each cue allowed the equivalence classes to be
narrowed down, until objects could be recognized. Thus, the
equivalence classes and MCOR algorithm were combined
together so information from multiple cues is utilized incre-
mentally as the data from the QRIO robot is retrieved.

Although these are fairly simple cues, a major advantage
of the MCOR algorithm and equivalence classes is the ability
to combine multiple simple, fast cues that can be used
to come up with results that would normally need more
complicated cues, and slow extensive training.

VII. EXPERIMENTS AND RESULTS

In order to demonstrate the effectiveness of these concepts,
we ran the adjusted MCOR algorithm on video from a Sony
QRIO robot. The robot remained static as it observed the
interaction of a human with a set of 5 objects (Pen, Paper,
Fork, Plate, and Cellphone) and using the presented cues.

Initially, the weights used in the online object recognition
were calculated offline using simulated data [1]. The result-
ing object dictionary used in the recognition is shown in
figure 8.

MCOR was run on about four minutes of video. Below,
we give a few examples of the results. We chose three
scenarios that illustrate the concept of the equivalence classes
described and the robustness of the algorithm in dealing
with ambiguous cues. In the first instance, we illustrate its
ability to recognize objects with similar shape. In the second,
its ability to recognize objects with ambiguous activities,
and in the third, its ability to recognize objects that can be
recognized without ambiguity.

A. Distinguishing Ambiguous Shapes

In this first scenario, we demonstrate how objects with
ambiguous shapes are distinguished by the algorithm. There
were two possible sets of objects that could be confused
based on shape: the fork and pen (which are both long and
thin) and the plate and paper (because the shape measure
is based on the aspect ratio of the bounding box, the shape

Fig. 8. Object dictionary used in the MCOR algorithm for recognition. Weights were
determined through learning based on large amounts of data generated by a simulator.

Fig. 9. Recognition results of a fork and a pen where both have the same shape.
Results of the object recognition algorithm are given as labels embedded on to each
frame of the video. Video is taken from the left-eye camera of a QRIO robot.

of the plate and paper come out to about the same, if more
complicated shape recognition were used it is possible to
distinguish them without having to add additional cues. This
also nicely demonstrates how the algorithm can compensate
for weak cues). See figure 9 for an example of the fork and
pen scenario. The plate and paper yielded similar results,
under the writing activity.

B. Distinguishing Ambiguous Activity

In the second scenario of ambiguous activities (see figure
10 for an example of the results), we have two sets of objects:
fork and plate, and pen and paper. In each of these instances,
the same activity (eating in the first case, writing in the
second) is associated strongly with both objects. Because
our algorithm takes into account both color and shape, it can
easily resolve these differences. Because of the equivalence
classes, it actually only applies one, i.e. color or shape, since
either would be enough to put the objects in their separate
classes.

C. No Ambiguity

In the third task, we wanted to illustrate that the MCOR
algorithm can recognize objects on the first shot, without
having to disambiguate between other objects.



Fig. 10. Recognition of pen and paper, given that the activity of writing is associated
with each.Results of the object recognition algorithm are given as labels embedded on
to each frame of the video. Video is taken from the left-eye camera of a QRIO robot.

Fig. 11. Recognition results for the cellphone. Results of the object recognition
algorithm are given as labels embedded on to each frame of the video. Video is taken
from the left-eye camera of a QRIO robot.

In figure 11, the results of the algorithm are shown, where
cellphone was successfully recognized without ambiguity
with another object, taking advantage of the fact that it has a
very distinctive property none of the other objects have, i.e.,
its association with talking.

Thus, the algorithm was able to demonstrate its use in
real robot data, correctly identifying multiple interactionable
objects.

VIII. CONCLUSION

In summary, we have identified and termed the subset
of objects which can be utilized in multiple-cue object
recognition and other methods which depend on interaction
to gain information, i.e., “interactionable” objects. We have
shown that the multiple cue object recognition (MCOR)
algorithm can be applied to real robot data as demonstrated
on the Sony QRIO. We successfully introduced the concept
of equivalence classes into the MCOR algorithm, used a
hierarchical activity recognition algorithm that correctly pro-
duced activity labels useful in the overall object recognition.
The QRIO was able to identify all specified objects. Our
approach further shows how multiple-cues can allow simple
fast cues to produce recognition results that would often
require much more time and complication, or unrealistic
restrictions on real-world data to produce the same results.
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