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Abstract— This work builds upon the fact that robots can
observe humans interacting with the objects in their environ-
ment, and that humans provide numerous non-visual cues to the
identity of objects. In previous work, we outlined a Multiple-
Cue Object Recognition (MCOR) algorithm which attempted
to use multiple features of any type to produce more robust
object recognition. All results so far reported with MCOR has
been on data collected by ourselves.

In this work, we introduce new advancements in the MCOR
algorithm to increase its effectiveness and ability to deal with
complex real data from outside datasets. These advancements
include the integration of Scale-Invariant Feature Transform
(SIFT) features and an improvement in training. To demon-
strate the effectiveness of the MCOR framework, we first show
a comparison of the MCOR algorithm to an outside dataset to
show its basic advantages. We then demonstrate the advanced
MCOR features on real cooking video datasets.

I. INTRODUCTION

There are a variety of tasks where an agent’s ability to
accomplish them depends heavily on the reliable recognition
of the objects in the environment. Category-level Object
recognition however has proven to be a significantly difficult
challenge especially with the complexity of real world data,
where there is great variation in both the appearance of
objects within a single object class (e.g. chairs come in many
shapes and colors), and in the appearance of the same object
under various circumstances (e.g. the same chair can appear
different with changes in lighting, view, and orientation).

Several approaches have attempted to focus on learning
the visual features of an object in order to recognize it.
Although great progress has been made along these lines,
there is still much to be done in order to build an object
recognition system that can be used under any of the various
situations that must be dealt with real data.

In dealing with this complexity, we are particularly inter-
ested in the important observation that the environment and
context around an object can provide numerous non-visual
cues to the identity of the objects, such as the interaction of
humans with those objects, which can then be utilized by
an agent observing the interaction. The benefit of including
non-visual information is supported by the success made by
a few approaches, which have successfully integrated non-
visual cues, although generally restricted to a single type of
non-visual information.
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In previous work, we have shown that visually similar
objects can be disambiguated through the integration of
information obtained from cues of various types producing
a Multiple-Cue Object Recognition (MCOR) algorithm [2].
We defined a context-dependent subset of objects, “interac-
tionable” objects, as objects that can interact or be interacted
with. This set of objects is most applicable to our multiple-
cue algorithm [3] and functional recognition algorithms.

In this work, we outline advancements in the algorithm,
making improvements on two key features:

Integration of SIFT Features In order to enhance the
visual description of the objects being learned, the
advanced MCOR algorithm includes scale-invariant
feature transform (SIFT) features [8] to the defini-
tion of each object.

Training In previous work, learning was previously
done on simulated training sets, in the work we
describe the method used to develop a greater
training dataset and the information that it provides.

These advancements allowed the MCOR algorithm to be
more easily and effectivly used on other datasets besides
those collected by ourselves. In order to evaluate our frame-
work, we first show a comparison of the MCOR algorithm
to another object recognition technique and dataset that also
uses activity information for object recognition. We then
demonstrate the advancements of the MCOR algorithm on
real cooking video datasets.

II. RELATED WORK

There have been numerous vision-alone-based object
recognition systems [9], [4], [17], [12], [8]. Although fast and
accurate results have been demonstrated by these techniques,
the dependence of these approaches on visual cues alone
make them susceptible to variations in size, lighting, rotation,
and pose, all of which can not be avoided in real world data.

Other approaches have attempted to compensate for the
weaknesses of visual cues by including another type of
information such as context [11] and activity cues [10], [16].

Functional recognition [15], [14], [19], [18], a technique
which uses affordance properties to determine the function
and finally identity of the object, is another category of
algorithms, similar to MCOR, which attempts to use the way
people interact with objects in order to identify an object
either in place of or in conjunction with its visual attributes.

Encouraged by the general success of these approaches in
integrating a non-visual cue for more robust object recogni-
tion, moving past just functional information to include other
cues such as speech, MCOR [2] provides a general frame-
work for flexibly including multiple cues of any number and



any type, so that all cues, whether activity, visual, context,
or any other possible cues available now or in the future can
be used to provide evidence for the presence of an object.

III. MCOR

The MCOR framework is based on object recognition
using an unrestricted number of cues. It provides a flexible
framework for including evidence from any type of informa-
tion. It is able to use human interaction with the objects to
remove ambiguity. Figure 1 shows a flow diagram of MCOR.
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Fig. 1. Flow of MCOR framework: (From top to bottom) (1.) Get frame from video,
(2.) extract cues from the image, (3.) segment the image and associate extracted cues
with a segmented region, (4.) recognize objects based on dictionary, (5.&6.) update
object dictionary based on the recognized objects, search image again with updated
dictionary including updated visual description of object.

The MCOR algorithm begins by extracting all possible cue
information, c;. It then segments the region, ¢, associated
with that cue if it has not already been segmented. This
becomes a possible object candidate.

An object dictionary containing all the cues / associated
with each particular object and their weights, w;;, (i.e. the
strength of the association. It is learned using a Probabilistic
Relational Model see [1] for details.) is given. The evidence,
ex,; that the region, r; belongs to a particular object class, i
is then calculated using the equation:
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The objects are then recognized as the object class with
the greatest evidence, if it is above a threshold, 0, i.e.,
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Once an object is recognized, all the cues not previously
associated with that object class in the object dictionary gets
added to its definition. In this way, new cues can be added
to an objects definition in the dictionary and generalization
can occur.

IV. SCALE-IVARIANT FEATURE TRANSFORM IN MCOR

Previously, when a visual description of the object being
identified was grabbed, the visual description consisted of
color information and the aspect ratio of the bounding-box
around the segment produced by a region-growing color

segmentation algorithm [2]. In the advanced version of
MCOR, in addition to the color and shape information, we
grab SIFT (Scale-Invariant Feature Transform) features from
the area within the bounding box to build a model of the
object.

SIFT features [8] are well-known descriptors used widely
through computer vision and object recognition tasks. These
features are useful because they provide highly descriptive
texture-based features which are robust to most changes in
scale and rotation.

Because it would be too computationally intensive and
unnecessarily repetitive to calculate a feature for every pixel
location, we calculate SIFT features only at interesting points
in the image such as corners. There are numerous corner
detectors that can be used, we used the common Harris
Corner Detector [6], defined by the equation below:
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A is a Harris matrix whose eigenvectors and values can be
used to determine areas of interest, i.e. if the first and second
eigenvalues have a zero response, there are no features of
interest. If one has a large response, an edge is present. If
both have a large response, a corner is found. Brackets, <>,
indicate averaging over the summation of all pixel locations,
u, and G(u,v) corresponds to the Gaussian function used.

In SIFT, key locations are further deciphered by using
the maxima and minima of the results of the difference of
Gaussians are applied in scale space to a series of smoothed
and sampled images in an image pyramid.

Dominant orientations are assigned to each interest point
using a 128 dimensional vector formed from a histogram of
image gradients in the neighborhood of the interest point. See
[8] for exact details and functions. This produces key points
that are more stable and robust to changes in orientation and
scale.

In MCOR, we start with some initial training images from
which SIFT features are taken and stored in a database
in the object definition. An example of the interest points
where SIFT features were extracted are shown in figure 2.
Additional model images are added to the database if a
segment is determined to be recognized as a particular object
category by MCOR. In this way, new visual features can be
learned for each object dictionary as recognition occurs.

Fig. 2. Each point in the figure corresponds to the location of an extracted SIFT
feature. This is a training example of a cereal box used for recognition. Note the
numerous number of feature points due to the complex texture on the cereal box.

If a model for an object is already stored in a database,
then we look for that object in each of the frames. In figure



3, we show an image of the SIFT features extracted during
recognition. These key points are then compared with the
key points saved in each object dictionary using a Hough
Transform to determine the strength of the match. The
similarity is then used as the similarity measure described in
the evidence equation in section 3. Weight is set to 1 since
there we assume that a SIFT model of an object is strongly
associated with that object. It is then up to the similarity to
determine the extent of the evidence provided by the SIFT
response.

Fig. 3.

Thus, MCOR is able to create a more detailed visual
descriptor of the objects being described by including scale-
invariant feature transform models to each object definition.

V. TRAINING

Another advancement made to the MCOR algorithm is
an improvement in the training data. In order to train the
algorithm in previous experiments, we used simulated data
programmed off of a human-defined model of cue and object
associations. In order to get a better reflection of real world
data, we developed and used tools that could produce a useful
dataset for object recognition of ‘interactionable’ objects.

Because MCOR and functional recognition algorithms are
able to utilize cues provided by the interaction of humans
with objects. The training mechanisms described here were
based on producing datasets with those characteristics. There
are two mechanisms used to produce such datasets which
we describe below: (1) Scene sorting, which is used to
neutralize the common camera shifting of data taken from
real world datasets, and (2) Labeling using ViPER, which
uses a labeling program from the University of Maryland and
develops a labeling framework to provide useful information
to ‘interactionable’ based algorithms.

A. Scene Sorting

Because we want training datasets which are primarily
generated from real world datasets in order to show the
advantages of the MCOR algorithm in the real world. The
problem is most real world video datasets, except for those
filmed in a restricted laboratory, consist of frequent shifts
in camera angles (think of any real world TV show such
as cooking shows). In order to compensate for these sudden
shifts in camera angle, we outline a scene gist algorithm
used to sort different camera angles or scenes into bins with

similar scenes, so they can be processed using the same
tracking or computer vision parameters that would need to
be adjusted if the scene were constantly shifting.

In our scene sorting algorithm, we use local-intensity
histograms to separate viewing angles. This is done by
dividing images into four sections. A gray value histogram
of each section is then taken. The image is divided into four
regions in order to provide some spatial information, if a
single histogram was used for the entire image all spatial
information would be lost. Although dividing the image into
even more sections would provide more spatial information,
it also reduces the robustness. Through past experience, it
has been determined that four components usually provides
the best balance between the tradeoffs. See figure 4 for an
example of the gist descriptor.

The histogram is then compared to a database of stored
histogram values. If the histogram is similar to one already
found in the database it is labeled under the same scene
category. If it is different then any other histogram according
to a particular histogram, it is then added to the database as
a new scene category.
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Fig. 4. Gist information extracted and used in order to separate different scenes.

Once the video clips are properly sorted into their cor-
responding scene/camera viewing angle categories, we then
need a way to label each of the clips with all the information
that would be useful for learning for an ‘interactionable’
based algorithm.

B. Labeling using ViPER

There are a number of video labeling products out there,
but we chose to use ViPER: Video Performance Evalua-
tion Resource [7] by the Language And Media Processing
(LAMP) at the University of Maryland because it allows
you to easily define your own schema of labeling as well
as allows for duplication and interpolation when labeling an
object across a large number of frames.

Using ViPER, we developed an ‘interactionable’ schema
which can provide useful information about objects and their
interactions. Thus, we labeled the following:

o Person

— Face: Bounding box around frontal face

— Body: Bounding box encompassing entire body
seen

— Hands: Bounding box around left and right hand

« Object
— Label: Object category of that object



— Location: Bounding box around object
— Segment: Polygon around the true segmentation of
the object.

e <Cue> - can be replaced with any cue type, ex:
Activity.
— Value: Object category of that object
— Person: Person providing or related to the cue
— Objects: Objects being affected or generating the
cue

This schema (see figure 5) allows for a large variety
of learning opportunities for example once could learn the
average distance of an activity cue as related to the person
doing the activity (for instance the location of the face) from
an object. This information can then be used to reduce the
search area of the segment of the object being recognized.

This then creates XML files for easy processing which can
then be used for easy training and performance evaluation.
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Fig. 5. Example of Labeling using ViPER.

The data provided by these techniques provide a good base
for providing training data which could potentially be used
in any real world circumstance where similar objects are
present, so a robot could find training from cooking videos
useful when running in a kitchen setting, for example.

VI. EXPERIMENTS AND RESULTS

In order to evaluate our framework, we first show a com-
parison of the MCOR algorithm to another object recognition
system and dataset that also uses activity information in
determining the evidence of the presence of a particular
object. We then demonstrate the advancements of the MCOR
algorithm on cooking video datasets.

A. MCOR Comparison using Outside Dataset

In order to demonstrate the ability of the MCOR algorithm
to run on datasets outside of our own, we first compare
results produced by Gupta et al. [5] on their dataset.

The dataset consist of forty-six videos that were five to
ten seconds long. Frame size was 640x480 pixels.

In this work, we have successfully applied the MCOR
algorithm to this Gupta set, demonstrating: (i) An equivalent
object recognition accuracy to the results reported by Gupta,
(ii) the additional ability to generalize from previous experi-
ence, i.e., the algorithm visually recognizes objects without
the additional activity recognition, after it has previously
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Fig. 6. Captured frames taken from two different videos from the Gupta and Davis
dataset. In the left, the 150th frame was captured at the point when the activity of
pouring was recognized. This allowed the cup to be recognized and the visual features
to be stored in the cups dictionary. Thus, when the next video was processed with the
updated definition. The cup was able to be recognized on the first frame without any
other cue information.
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Fig. 7. Captured frames taken from results video generated after processing various
video clips from the Gupta and Davis Dataset. Each frame shows the point in the video
when an activity cue was recognized, which allowed for the object being used to be
recognized and the color and shape information (top right of each frame) to be stored.

learned the association, and (iii) the successful engineering
of running the algorithm in other datasets.

The Gupta dataset is an optimal choice for frameworks
interested in ‘interactionable’ objects, i.e., objects that are
interacted with and interact, such as the MCOR algorithm.
The Davis’s group used these videos to do activity recog-
nition and then object recognition based on these activities.
Here is an overall description of the dataset:

o Number of Videos: 46 videos each about 5-10 secs

« Objects Recognized: Spray can, Phone, Cup, Flashlight

« Activities Recognized: 5 activities: Spraying, Answer-

ing, Lighting, Pouring, Drinking

Gupta was able to recognize 98.67 percent of the objects
using activity information based on a histogram of oriented
gradients using an adaboost classifier, this was an improve-
ment over the 78.33 percent recognition rate without activity
information.

We did not have access to their activity recognition, so for
our object recognition and for comparison with the results
from Gupta, we manually created the activity recognition
information for each of the videos according to the activities
outlined by [5].



MCOR provides a color-based region segmentation and
tracking algorithm (extending my previous algorithm and
implementing it in Matlab) that can segment objects in the
images using color-based region growing. It then tracks that
region according to proximity, shape and color [2], [3].

We then ran the MCOR algorithm using the automated
visual object segmentation and tracking and the manually
annotated activity information.

Given an object dictionary with the activity information
and the visual information, MCOR was able to achieve a
100 percent recognition rate, as the manual annotations on
activity had no noise.

Both my 100 percent and the Gupta reported 98.67 percent
object recognition excellent performance, are not surprising
as this Gupta dataset has a one-to-one association of an
activity to an object. Example of our results can be found in
figures 6 and 7.

One of the strengths of the MCOR approach is that
it allows a many-to-many weighted associations between
objects and cues, which is not tested demonstrated with the
Gupta dataset. Furthermore, another main contribution of
MCOR is the ability to learn an association and generalize
from it to similar visual situations.

Interestingly, using the Gupta dataset, after MCOR rec-
ognizes an object through the association of the visual and
activity cues, it is able to generalize and recognize objects
solely from their updated visual description without the need
for the use of the activity information. For example, the
white cup in one video (captured frame shown in left image
in figure 6) was actually recognized based on the color
and shape information learned from another video (captured
frame shown in right image in figure 6).

In summary, with this dataset, we have shown that the
MCOR algorithm can utilize datasets outside those generated
by our own work. MCOR got comparable results and showed
its generalization capabilities.

B. Advanced MCOR on Cooking Data

In this section, we show how the training and SIFT
advancements were used in order to enhance the MCOR
framework. First, we show the utilization of the training to
learn the weights used in the object dictionary. In previous
work, this had always been determined either by hand or
based off of simulated data. Second, we show the benefit of
the SIFT features for enhancing the visual descriptors for the
MCOR algorithm.

1) Training: Training was done on two main sources:

o Rachel Ray videos: Learning was done on 100 video
clips from 1 to 30secs, from 3 half-hour videos (Ripped
from DVD)

+ LACE dataset, University of Rochester [13]: Learning
was done on 32 video clips from 1 to 3mins, from 8
half-hour videos

In figures 8 and 9, we show tables showing the proba-
bilities learned from the XML data generated by our ViPER
schema. These probabilities represent P(O|C), where O is the
object category and C, a cue value. One can see how certain

Object/ Twist | Smash | Shake | Drop/ | Cut | Mix Pour | Squeeze | PickUp PutDown | Point | Scoop
Activity Add (on/from) (objectffrom) (object/to)

Bowl 0 0 7 .9 0 1 .8 1 4 .5 .3 0
Knife 0 1 0 0 1 0 0 0 .3 .3 0 0
OilJar 0 0 0 0 0 0 .2 0 .2 .1 0 0
Spice 1 0 .3 .6 0 0 0 0 .3 .3 0 0
WineBottle 0 0 0 0 0 0 .1 0 .1 .1 0 0
CuttingBoard 0 0 0 0 .8 0 0 0 4 .5 .3 0
Plate 0 0 0 0 0 0 .2 0 .1 .1 .3 0
Grill 0 0 0 0 0 0 0 0 0 0 0 0
Pan 0 0 0 .1 0 0 0 0 0 0 .3 0
Spoon 0 0 0 0 0 .5 0 0 0 0 0 1

Fig. 8. Learned weights for the Rachel Ray Cooking dataset. Each number represents
the probability of an object (rows) given each cue value (columns).
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Fig. 9. Learned weights for University of Rochester (LACE Dataset). Each number
represents the probability of an object (rows) given each cue value (columns).

activities are more strongly associated with a particular
object such as ‘Pour’ to ‘Bowl’ with a value of .8, while other
activities such as ‘PutDown’ are more widely distributed
across all the objects and thus less weighted when giving
evidence for any particular object.

This training data then provided the weight values that
were then used in the MCOR algorithm when recognizing
objects. Since the recognition results are similar to those
shown in previous papers [2], we will mainly focus in the
next section on the new SIFT adaptation.

2) SIFT Results: The inclusion of the SIFT features
provides an added benefit to the MCOR algorithm, where
it can now visually recognize objects it could not do so
previously. In figure 10, we show some examples of SIFT
models extracted from one training example of a knife, a
cereal box and wine bottle. Note how the objects with a more
interesting texture pattern (such as the cereal box) provides
more interest points for the SIFT model.

Fig. 10. Examples of SIFT models extracted from one training example of a knife
(top left), a cereal box (top right), and a wine bottle (bottom).

It is these complex textured items which gave the previous
MCOR algorithm difficulty, primarily because the previous
version was solely dependent on getting a color segmentation




to visually describe the object (see figure 12 for examples).
This meant textually complex objects would provide strange
and difficult segmentations and so could not be recognized as
often in each frame. With the new MCOR algorithm which
looks for SIFT features as well, these objects are no longer
a major problem.

Fig. 11. SIFT features, represented by yellow + signs, found to match the model of
the knife (top left), the cereal box (top right), and the wine bottle (bottom). Note the
large number of matched SIFT features for the ceral box because its large amounts of
texture, and the small number for the less textured knife.

Fig. 12.
features used by MCOR. Top left shows the segmentation of the knife, top right shows
the segmentation of the cereal box, and bottom shows segmentation of a cup. Note the
better segmentation of the homogenous colored knife and the less precise segmentation
of the more textured cereal box.

Color segmentation results, colored in with red, used in color and shape

It is important to note however, that using the SIFT fea-
tures alone does not provide enough information to recognize
all the objects that MCOR can. Take the knife for instance in
figure 11. Because of the smooth texture of the knife, it could
not get enough interest points to properly find it in the frame.

This shows the benefit of the integration of multiple cues by
the MCOR algorithm, which can find the knife (figure 12)
using the color-segmentation growing as well as the cutting
activity, even if the SIFT feature model cannot.

VII. CONCLUSION

With this paper, we have demonstrated the advantage of
MCOR compared to another functional recognition object
recognition system, where we showed both a match and
slight improvement in the recognition rate and the added
ability to generalize object visual properties to new videos.
In addition, we outlined and demonstrated the advancement
of new MCOR features including the use of SIFT features
and a new framework for training data.
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